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RAINFOREST PROJECT SUMMARY 

Food and biomass production systems are among the most prominent drivers of 

biodiversity loss worldwide. Halting and reversing the loss of biodiversity therefore 

requires transformative change of food and biomass systems, addressing the nexus 

of agricultural production, processing and transport, retailing, consumer preferences 

and diets, as well as investment, climate action and ecosystem conservation and 

restoration. The RAINFOREST project will contribute to enabling, upscaling and 

accelerating transformative change to reduce biodiversity impacts of major food and 

biomass value chains. Together with stakeholders, we will co-develop and evaluate 

just and viable transformative change pathways and interventions. We will identify 

stakeholder preferences for a range of policy and technology-based solutions, as well 

as governance enablers, for more sustainable food and biomass value chains. We will 

then evaluate these pathways and solutions using a novel combination of integrated 

assessment modelling, input-output modelling and life cycle assessment, based on 

case studies in various stages of the nexus, at different spatial scales and 

organizational levels. This coproduction approach enables the identification and 

evaluation of just and viable transformative change leverage points, levers and their 

impacts for conserving biodiversity (SDGs 12, 14-15) that minimize trade-offs with 

targets related to climate (SDG13) and socioeconomic developments (SDGs 1-3). We 

will elucidate leverage points, impacts, and obstacles for transformative change and 

provide concrete and actionable recommendations for transformative change for 

consumers, producers, investors, and policymakers.



 

This project is funded by the European Union’s 
Horizon Europe research and innovation programme 
under grant agreement no. 101081744. 

EXECUTIVE SUMMARY 

RAINFOREST aims to explore pathways and interventions to achieve 

transformative change for reducing biodiversity impacts. To evaluate effectiveness 

of these pathways and interventions to achieve transformative change, RAINFOREST 

develops a model toolbox that considers climate, biodiversity, and socioeconomic 

impacts along entire value chains. The toolbox contains a set of environmental-

economic and impact assessment models that are linked to each other to enable the 

quantification of a comprehensive and complementary set of impact indicators 

relevant for evaluating progress towards targets defined in international 

agreements.  

The toolbox includes three environmental-economic models: (i) the partial 

equilibrium model GLOBIOM, which is specialised in land use-based activities; (ii) 

the monetary environmentally extended multi-regional input-output (EEMRIO) 

model EXIOBASE that assesses sector-level environmental footprints of the whole 

economy (partially) based on national supply and use tables; and (iii) the physical 

EEMRIO model FABIO that assesses environmental footprints of agriculture and food 

products (partially) based on FAO statistics. In addition, the toolbox includes three 

impact assessment models: (i) the life cycle impact assessment (LCIA) model LC-

IMPACT that quantifies impacts of several pressures on species richness and human 

health; (ii) the LCIA model ReCiPe that quantifies multiple environmental impacts, 

such as global warming, as a function of several pressures; and (iii) the global 

biodiversity model GLOBIO, which evaluates impacts of several pressures on 

ecosystem intactness. 

This report describes the set-up of the model toolbox and how it is applied in 

RAINFOREST. In Section 2, the environmental-economic models are described; in 

section 3, the impact assessment models are described; in Section 4, the methods 

for quantifying climate, biodiversity, and socioeconomic impact indicators are 

described; and in Section 5 the application of the model toolbox is discussed. Section 

6 contains a summary and outlook. 
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1. INTRODUCTION 

RAINFOREST aims to explore pathways for transformative change to reduce 

biodiversity impacts of major food and biomass value chains. This includes the 

development of broad-scale pathways (Work Package 1), but also case-studies of 

interventions that may achieve transformative change such as improving fishmeal 

production technologies (WP3), changing food consumption patterns (WP3), 

considering environmental footprints in investment portfolio decisions (WP4), and 

consuming novel foods (WP5). To evaluate the transformative potential of these 

pathways and interventions, RAINFOREST assesses the spatially- and sector-explicit 

environmental and socio-economic impacts associated with the pathways and 

interventions along entire value chains.  

The model toolbox is a set of environmental-economic and impact assessment 

models that can be used to quantify climate, biodiversity, and socioeconomic 

responses to socioeconomic and policy pathways and interventions. As such, the 

model toolbox enables the quantification of corresponding climate, biodiversity, and 

socioeconomic impacts in terms of a set of complementary impact indicators. By 

quantifying effects of interventions to reduce environmental impacts, the toolbox 

can be used to evaluate the implications of transformative change for reaching 

climate, biodiversity, and socio-economic targets, such as those defined in the Paris 

Climate Agreement, EU Green Deal, Kunming-Montreal Global Biodiversity 

Framework, and Sustainable Development Goals (UNFCCC 2016; EC 2019; UN 2019; 

CBD 2022). 

The toolbox includes an integrated assessment model to quantify pathways for 

transformative change and their implications for greenhouse gas emissions (GHG) 

and land use (GLOBIOM; (Havlík et al. 2014)); a monetary environmentally extended 

multiregional input-output (EEMRIO) model to quantify, e.g., GHG and land use 

footprints as well as socio-economic impacts related to national sectors across the 

global economy (EXIOBASE; (Stadler et al. 2018)); a physical EEMRIO model to 

quantify, e.g., GHG and land use footprints related to agricultural and food products 

(FABIO; (Bruckner et al. 2019)); and models to quantify climate and biodiversity 

responses to, e.g., GHG emissions and land use change (LC-IMPACT, ReCiPe, and 



D2.1 — Initial toolbox design including the selection and implementation of environmental and socio-
economic SDG indicators 

11 

GLOBIO; (Huijbregts et al. 2017; Schipper et al. 2020; Verones et al. 2020)). The 

toolbox establishes links between individual models to allow for a comprehensive 

assessment of climate, biodiversity, and socioeconomic footprints of a variety of 

activities and actors (Figure 1). In addition, the toolbox aims to further develop the 

individual models to better represent human influence on the environment. Hence, 

the toolbox fulfils a key function in the RAINFOREST project. 

In this report, we describe the set-up of the model toolbox and its planned 

application in RAINFOREST. First, we describe the environmental-economic and 

impact assessment models (Sections 2 and 3, respectively). Second, we describe how 

the environmental-economic models are linked to the impact assessment models to 

quantify climate, biodiversity, and socioeconomic impact indicators (Section 4). 

Finally, we describe how the toolbox will be applied in the case-studies that explore 

interventions aimed to achieve transformative change (Section 5). 

 

 

Figure 1. Illustration of the model toolbox and the planned soft links between them. 
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2. ENVIRONMENTAL-ECONOMIC MODELS 

2.1 GLOBIOM 

GLOBIOM is a bio-economic model designed to address various land use related 

topics (bioenergy policy impacts, deforestation dynamics, climate change 

adaptation and mitigation from agriculture, long term agricultural prospect) (IBF-

IIASA 2023). It belongs to the family of partial equilibrium models, as it focuses on 

a few economic sectors to represent them at a high level of detail. As a model 

specialized in land use-based activities, GLOBIOM benefits from a detailed coverage 

for the agriculture, forestry and bioenergy sectors, with an explicit representation 

of production technologies, a geographically explicit allocation of land cover and 

land use and their related carbon stocks and GHG emission flows.  

GLOBIOM provides projections from the year 2000 onwards, with a ten-year time 

step up to 2100. Commodity markets and international trade are modelled at the 

level of 59 aggregate economic regions (the aggregation is flexible and can be 

adapted to the users’ needs) at a global coverage. The spatial resolution of the 

supply side relies on the concept of Simulation Units that are aggregates of 5 to 30 

arcmin pixels belonging to the same altitude, slope, and soil class, and following 

country borders. Within each spatial unit, forests are distinguished between 

unmanaged and managed forests (including optional coupling to the G4M model for 

a more detailed representation of various forest managements), managed grassland 

used for livestock feeding is detailed at the level of livestock species and systems, 

while cropland use is distinguished to 4 input levels (subsistence, low input rainfed, 

high input rainfed, high input irrigated) (Kindermann et al. 2006). The agricultural 

sector in GLOBIOM includes the production of 18 major crops that are globally 

cultivated, representing more than 70% of the total harvested area and 85% of the 

crop-derived calorie supply, according to data reported by FAOSTAT. In addition, 

the GLOBIOM model features a comprehensive and detailed representation of the 

global livestock sector. The model distinguishes between different animal species 

(bovines, small ruminants, pigs, and poultry), covering 7 animal source products 

(bovine meat and milk, small ruminant meat and milk, pig meat, poultry meat, and 

eggs). GLOBIOM has detailed representation of the forest sector and its supply chain. 
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The model includes five primary wood products (pulplogs, sawlogs, ither industrial 

roundwood, fuel wood, and logging residues) that can be used as inputs for material 

or energy production processes. The current version of the model includes eight final 

products (sawnwood, plywood, fiberboard, chemical pulp, mechanical pulp, other 

industrial roundwood, fuelwood, and energy wood). GLOBIOM also explicitly covers 

biomass feedstocks from energy plantations and existing forests for energy use.  

The model takes as input a large range of spatially explicit datasets. These include 

remote sensing, biophysical model, socioeconomic, and tradeflow data to estimate 

land and water use related to the production of various agricultural and forestry 

goods. Future projections are driven by additional, scenario-specific, assumptions 

about population, GDP, dietary preferences, trade costs, climate change impacts on 

crop and managed grassland yields, that are translated into model parameters such 

as product- and region-specific demand, crop and livestock productivity and trade 

costs. It can also consider nature and climate interventions such as increased 

protection and restoration efforts, limitations to nutrient surplus or water 

consumption in the agricultural sector as well as additional biomass demand or 

carbon taxes. The detailed representation of land use and land cover allows for 

customizable indicators related to land occupation in the reporting, ranging from 

main land covers at regional level to detailed land use at 5 arcminutes. In the latter 

case, the outputs of the GLOBIOM model are often combined with a Bayesian 

downscaling framework (Krisztin et al. 2022), as is for example done in Leclère et 

al. (2020). 

GLOBIOM covers all major GHG emissions from Agriculture, Forestry and Other 

Land Use (AFOLU) based on IPCC accounting guidelines including N2O from 

application of synthetic fertilizer and manure to soils, N2O from manure dropped on 

pastures, CH4 from rice cultivation, N2O and CH4 from manure management, and CH4 

from enteric fermentation, and CO2 emissions/removals from above- and below-

ground biomass changes for other natural vegetation. CO2 emissions and removals 

from afforestation, deforestation, and wood production in managed forests are 

estimated by the geographically explicit (0.5x0.5 degree) model G4M that is linked 

to GLOBIOM. The GLOBIOM model can be also coupled to the MESSAGE energy model, 

to quantify the GHG emissions associated to the broader climate mitigation 

pathways for the full economy (Fricko et al. 2017). 
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In addition, GLOBIOM endogenously represents a comprehensive set of mitigation 

technologies for the crop- and livestock sectors including technological options 

(based on the US EPA dataset of non-CO2 abatement technologies), structural options 

(e.g. transition in production systems, changes in regional product mix, international 

trade), and demand side (alternative diets, consumer response to price signals) 

mitigation options (EPA 2019). 

Beyond land occupation, land transformation and GHG emissions related to the 

Agriculture, Forestry and Other Land Use (AFOLU) sector, the GLOBIOM model can 

provide indicators related to various environmental impacts. Impacts related to 

climate change impacts on the productivity of crops and managed grassland, 

available water for irrigation as well as subsequent changes in production, 

consumption, trade and prices including adaptation through changes in farming 

practices (e.g., adoption of irrigation) and reallocations of land use with and across 

regions including trade can be reported upon (Leclère et al. 2014; FAO 2015; 

Janssens et al. 2020), and are based on estimates of climate change impacts on the 

productivity of crops and managed grassland and the water cycle from biophysical 

(e.g., EPIC) and/or hydrological (e.g., LPJML, CWAT-M) models for various climate 

change scenarios and models from the Climate Model Intercomparison (CMIP5 and 

CMIP6) and Inter-Sectoral Impacts Model Intercomparison (ISIMIP1, ISIMIP3b) 

projects. 

The use of surface water and groundwater in the agricultural sector (based on 

exogenous data on water availability and endogenous modelling of irrigation water 

use including scarcity costs and irrigation technology adoption) and in other sectors 

(based on external projections from hydrological models) can be reported upon, as 

well as resulting water scarcity, including under climate change (Palazzo et al. 

2019). In addition, based on external data and endogenous modelling of water use, 

shortfall in environmental flows within surface water systems can be reported upon 

(Pastor et al. 2019).  

Reactive nitrogen flows within land systems including surplus and nitrogen losses 

from the agricultural sector and human settlements can be reported upon, based on 

external data (e.g., deposition, assumed trends in nitrogen use efficiency for 

cropland and managed grassland) and endogenous variables (e.g., crop area and 
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yield, fertilizer and manure application), following the methodology detailed in 

Chang et al (2021). In RAINFOREST, developments are ongoing to represent the 

phosphorous cycle (Section 4.1.2). 

Various metrics of biodiversity (area of habitat, wildlife population trends, 

intactness, regional and global extinction risks) can be projected, based on 

endogenous land use projections as well as biodiversity models based on various 

approaches (Di Fulvio et al. 2019; Leclère et al. 2020). Additional policies in terms 

of conservation and restoration can also be implemented. GLOBIOM can also be 

coupled to biodiversity models, to estimate biodiversity impacts associated with 

land use projections (Leclère et al. 2020). In RAINFOREST, indicators will be 

generated through the coupling to LC-IMPACT (terrestrial and freshwater ecosystems 

quality; Section 4.1.2), ReCiPe (global warming potential; Section 4.1.3), and 

GLOBIO (Mean Species Abundance; Section 4.1.4), including the development of a 

novel indicator on pesticide input use (Section 4.1.2). 

The GLOBIOM model will be used to quantify land use change, GHG emissions, 

nitrogen flows and biodiversity indicators in relation to transformative pathways 

(WP1) for the agriculture and forestry sectors and could provide estimates of GHG 

emissions associated to the rest of the economy through already existing MESSAGE 

simulations. Dedicated modules will also be used to quantify additional indicators, 

such as population at risk of hunger, or added value in the agricultural sector. 

Furthermore, the GLOBIOM model is currently being developed to provide health 

indicators associated with a per capita food consumption at product level (Section 

4.1.1).  

 

2.2 EXIOBASE 

EXIOBASE 3 provides a time series of environmentally extended multi-regional 

input‐output (EEMRIO) tables for 44 countries (28 EU member plus 16 major 

economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous 

versions of EXIOBASE by using rectangular supply‐use tables (SUT; covering 163 

industries by 200 products) as the main building blocks. The tables are provided in 

current basic prices (Million EUR). EXIOBASE is compatible with the System of 

Environmental-Economic Accounting (SEEA)  (Stadler et al. 2018). EXIOBASE 3 
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contains time series of EEMRIO tables ranging from 1995 to 2022 (extrapolated for 

the most recent years).  

EXIOBASE3 updates are released regularly on the Open Science Data repository 

Zenodo. The latest EXIOBASE version is publicly available at the Zenodo repository: 

https://doi.org/10.5281/zenodo.3583070. Currently, EXIOBASE 3 is released under 

a CC-BY-SA 4.0 license, with some extensions (in particular land use) inheriting the 

stricter license from FAO (CC-BY-SA-NC). 

Hybrid LCA-MRIO models have combined country- and sector-aggregated EXIOBASE 

data with actor-specific data (Nakamura & Kondo 2002). For example, Sen et al. 

(2019) combined EXIOBASE data to evaluate footprints of passenger vehicles. The 

combination of EEMRIO and more detailed data enables the consideration of 

complete international value chains while maintaining a high-resolution of activities 

related to certain processes (Beylot et al. 2020). Although EEMRIO models are 

particularly useful to trace pressures and impacts along supply chains, quantifying 

the biodiversity losses associated with the pressures and resource uses remains a 

challenge (Wiedmann 2016). Coupling EXIOBASE to the LC-IMPACT life cycle impact 

assessment model has proven to be an effective way of translating the 

environmental pressures to biodiversity loss (Verones et al. 2017).  

 

2.3 FABIO 

The Food and Agriculture Biomass Input-Output (FABIO) model, provides a set of 

multiregional supply, use and input–output tables of 123 agricultural and food 

products for 186 countries (and one rest-of-the-world region) (Bruckner et al. 2019). 

The tables are provided in physical units and the product flows are primarily based 

on publicly available FAOSTAT crop production and trade statistics data 

(https://www.fao.org/faostat/en/#data). FABIO data comprises supply, use, and 

input-output tables from 1986-2013 (FABIO v1.2 covers data until 2020 but is not 

publicly available yet),and is currently released under a CC-BY-NC-SA 4.0 license and 

publicly available at http://dx.doi.org/10.5281/zenodo.2577067.  

Compared to other MRIO databases, FABIO provides more detailed information on 

agricultural products, documenting country- and sector-specific inputs and outputs 

https://doi.org/10.5281/zenodo.3583070
https://www.fao.org/faostat/en/#data
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in terms of physical product flows (Bruckner et al. 2019). Using physical instead of 

monetary data reduces uncertainty regarding the link between agricultural land use 

area to agricultural product trade flows (Bruckner et al. 2015). 

FABIO has been increasingly used to quantify agricultural related environmental 

footprints. For example, Vanham et al. (2023)  used FABIO to calculate the land and 

water footprint of food consumption for the EU. They identified that livestock 

grazing was a major contributor to variation in EU land and water footprint. Sun et 

al. (2022b)  employed FABIO to compute the biomass carbon and GHG emissions 

driven by food consumption changes in high-income countries and found that the 

dietary shift from animal-based food to plant-based food in high-income nations 

could reduce GHG emissions from direct agricultural production and increase carbon 

sequestration. FABIO has also been linked to other models and data. For example. 

Kortleve et al. (2024) combined FABIO with public subsidy data to evaluate how the 

EU’s Common Agricultural Policy influences the EU food system through agricultural 

subsidies. Furthermore, FABIO and EXIOBASE have been integrated to assess global 

biodiversity loss driven by land use within key biodiversity areas (Sun et al. 2022a).  

 

2.4 FABIO-EXIOBASE hybrid model 

In the RAINFOREST project, the FABIO-EXIOBASE hybrid model, developed by 

Rasul et al. ((2024), under review), is used to quantify the biodiversity footprint 

from land use, water use, and freshwater eutrophication.  

FABIO-EXIOBASE hybrid model is a tiered hybrid EEMRIO model, that analyses the 

agrifood system of 123 biomass commodities in 186 countries in a consistent and 

comparable framework from 1995 to 2020, i.e. those products that are native in the 

FABIO model (Bruckner et al. 2019). The model fully accounts for intermediate 

inputs to the FABIO production activities by adding non-biomass inputs from 

EXIOBASE. Specifically, FABIO models the internal flows and outputs of the agrifood 

system, and EXIOBASE models the energy inputs from the rest of the economy 

(including both the direct and indirect energy demand), as well as food processing. 

The upstream impacts calculated with EXIOBASE can then be used as environmental 

accounts for FABIO. The coupled model links the consumption of products within a 
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region with its environmental impact caused both directly in the agricultural system 

and in the corresponding upstream value chain. 

In RAINFOREST, EXIOBASE (v3.8.2) and FABIO (v1.2) are combined. The FABIO-

EXIOBASE hybrid model will be further coupled to the LCIA method of LC-IMPACT, 

for conversion of environmental impact and quantify the biodiversity footprint. The 

model can consider four biodiversity-related environmental indicators, including 

climate change, land use, water use, and freshwater eutrophication. The FABIO-

EXIOBASE hybrid model will be applied to evaluate the biodiversity footprint for 

several novel food products.  
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3. IMPACT ASSESSMENT MODELS 

3.1 LC-IMPACT 

LC-IMPACT is a spatially differentiated life cycle impact assessment method at 

endpoint level. It contains currently 12 impact categories (climate change, ionizing 

radiation, ozone depletion, photochemical ozone formation, particulate matter, 

toxicity, freshwater and marine eutrophication, terrestrial acidification, land use, 

water use and mineral resources scarcity; Table 5). Within the impact categories 

both impacts on human health and ecosystem quality are included (e.g., human 

toxicity and ecotoxicity on freshwater, marine and terrestrial systems). The 

indicator for human health damage is DALY (disability adjusted life years) and the 

one for ecosystem quality is global PDF (global extinction, expressed as potentially 

disappeared fraction of species). What makes LC-IMPACT different from other LCIA 

methods is the comparatively high spatial resolution of characterization factors 

(especially for ecosystem quality) and the consistent consideration of global 

extinction. This is done by integrating a so called “vulnerability factor” that includes 

both information on the endemism of species and the already existing threats. LC-

IMPACT is at the moment in the process of being updated and expanded (a little bit 

in RAINFOREST, but most in the BAMBOO and PATTERN projects and with the help of 

an additional PhD student funded by NTNU). The aim is to eventually be able to also 

use the updated LC-IMPACT version in the model toolbox.  

The input for LC-IMPACT is a life cycle inventory, i.e., amounts of resources 

used/emissions released per functional unit. In addition, the geographical location 

of the process needs to be known, if the spatially-differentiated factors should be 

used (rather than the global average). LC-IMPACT is implemented in the SimaPro 

software and can be linked to the Brightway software package. 

The output of LC-IMPACT itself is characterization factors, i.e. damages per unit 

of intervention/release of emission. Multiplied with an inventory (or coupled to an 

environmental extension from EXIOBASE or ecoinvent) it will result in a coefficient, 

reflecting the damage at endpoint level per functional unit. 

 
Table 1. Characterisation factors of LC-IMPACT. The spatial coverage of all indicators native to LC-

https://bamboo-horizon.eu/
https://pattern-heu.eu/
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IMPACT is global (Verones et al. 2020).  

Aspect Indicator Unit Taxa 
coverage 

Pressure 
coverage 

Spatial 
resolution 

Description Model the 
indicator 
links to 

Biodiversity Potential 
disappeared 
fraction of 
species 
(PDF) 

PDF∙years Mammals, 
birds, 
reptiles, 
amphibians, 
and plants 

Land use (6 
categories)  

Ecoregion 
level (804 
ecoregions), 
national 
level (189 
countries), 
global 
average 

Indicator for 
global 
species 
extinctions 
due to 
habitat 
conversion 
(via the 
countryside-
SAR) 

LC-IMPACT 

Biodiversity Potential 
disappeared 
fraction of 
species 
(PDF) 

PDF∙years Mammals, 
birds, frogs, 
reptiles, 
butterflies, 
and plants 

Climate 
change 
(GHGs) 

Generic Indicator for 
global 
species 
extinctions 
due to 
temperature 
change (via 
GHG 
emissions) 

LC-IMPACT 

Biodiversity Potential 
disappeared 
fraction of 
species 
(PDF) 

PDF∙years Mammals, 
birds, 
reptiles, 
and 
amphibians 
and plants 

Water use 
(m3 water 
consumption
) 

watersheds, 
national 
level (189 
countries), 
global 
average 

Indicator for 
global 
species 
extinctions 
due to 
surface 
water 
consumption 
and 
groundwater 
reduction 

LC-IMPACT 

Biodiversity Potential 
disappeared 
fraction of 
species 
(PDF) 

PDF∙years Freshwater 
fish 

Freshwater 
eutrophicati
on (kg P 
emissions to 
freshwater 
and soil, 
and km2 
erosion) 

Ecoregion 
level (449 
freshwater 
ecoregions), 
national 
level (189 
countries), 
continental 
level (6 
continents), 
global 
average 

Indicator for 
global 
species 
extinctions 
due to 
eutrophicati
on (via P 
emissions to 
freshwater 
and soil and 
erosion 
ending up in 
freshwater) 

LC-IMPACT 

Biodiversity Potential 
disappeared 
fraction of 
species 
(PDF) 

PDF∙years Fish, 
crustaceans, 
molluscs, 
chinoderms, 
annelids, 
and 
cnidarians 

Marine 
eutrophicati
on (kg N 
emissions to 
freshwater 
and soil) 

Large 
marine 
ecosystems, 
basin, 
national 
level (189 
countries), 
continental 
level (6 
continents), 
global 
average 

Indicator for 
global 
species 
extinctions 
due to 
eutrophicati
on (via N 
emissions to 
freshwater 
and soil 
ending up in 
oceans) 

LC-IMPACT 

Biodiversity Potential 
disappeared 
fraction of 
species 
(PDF) 

PDF∙years Plants Terrestrial 
acidification 
(kg NOx, 
NH3, SOx) 

2.0°x2.5°, 
national 
level (189 
countries), 
continental 
level (6 
continents), 
global 
average 

Indicator for 
global 
species 
extinctions 
due to 
acidification 
(via kg NOx, 
NH3, SOx 
emissions) 

LC-IMPACT 

Biodiversity Potential 
disappeared 
fraction of 
species 
(PDF) 

PDF∙years Freshwater: 
fish; 
marine: 
lobsters, 
chondrichth

Toxicity (kg 
toxicant 
emitted to 
freshwater, 
marine, and 

Subcontinen
tal level (17 
regions), 
continental 
level (7 

Indicator for 
global 
species 
extinctions 
due to 

LC-IMPACT 
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yes, 
actinopteryg
ii, and sea 
cucumbers 

terrestrial 
air, water, 
and soil) 

continents), 
global 
average 

toxicity (via 
SSD curves 
linked to 
toxicants 
emitted to 
freshwater, 
marine, and 
terrestrial 
environment
s) 

Biodiversity Potential 
disappeared 
fraction of 
species 
(PDF) 

PDF∙years Plants Photochemi
cal ozone 
formation 
(kg NOx, 
NMVOC) 

Regional 
level (56 
TM5-FASST 
regions), 
national 
level (189 
countries), 
continental 
level (6 
continents), 
global 
average 

Indicator for 
global 
species 
extinctions 
due to 
photochemi
cal ozone 
formation 
(via kg NOx 
and NMVOC 
emissions) 

LC-IMPACT 

Human 
health 

Disability-
adjusted life 
years (DALY) 

DALY Humans Climate 
change (kg 
GHG 
emission) 

Generic Indicator for 
the 
reduction in 
a healthy 
life in years  
due to 
climate 
change (via 
GHG 
emissions) 

LC-IMPACT 

Human 
health 

Disability-
adjusted life 
years (DALY) 

DALY Humans Water use 
(m3 water 
consumption
) 

Watershed 
level (11050 
watersheds)
, national 
level (189 
countries), 
global 
average 

Indicator for 
the 
reduction in 
a healthy 
life in years 
due to 
water use 
(via water 
availability) 

LC-IMPACT 

Human 
health 

Disability-
adjusted life 
years (DALY) 

DALY Humans Particulate 
matter (kg 
PM2.5, NH3, 
NOx, SO2) 

Regional 
level (56 
TM5-FASST 
regions), 
national 
level (189 
countries), 
global 
average 

Indicator for 
the 
reduction in 
a healthy 
life in years 
due to PM 
emissions 
(via kg 
PM2.5, NH3, 
NOx, SO2 
emissions) 

LC-IMPACT 

Human 
health 

Disability-
adjusted life 
years (DALY) 

DALY Humans Toxicity (kg 
toxicant) 

Subcontinen
tal level (17 
regions), 
continental 
level (7 
continents), 
global 
average 

Indicator for 
the 
reduction in 
a healthy 
life in years 
due to 
toxicity 

LC-IMPACT 

Human 
health 

Disability-
adjusted life 
years (DALY) 

DALY Humans Photochemi
cal ozone 
formation 
(kg NOx, 
NMVOC) 

Regional 
level (56 
TM5-FASST 
regions), 
national 
level (189 
countries), 
continental 
level (6 
continents), 
global 
average 

Indicator for 
the 
reduction in 
a healthy 
life in years  
due to 
photochemi
cal ozone 
formation 
(via kg NOx, 
NMVOC 
emissions) 

LC-IMPACT 
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Human 
health 

Disability-
adjusted life 
years (DALY) 

DALY Humans Ozone 
depletion 
(kg ODS) 

Generic Indicator for 
the 
reduction in 
a healthy 
life in years 
due to 
ozone 
depletion 
(via kg ODS 
emissions) 

LC-IMPACT 

Human 
health 

Disability-
adjusted life 
years (DALY) 

DALY Humans Ionizing 
radiation 
(kBq) 

Generic Indicator for 
the 
reduction in 
a healthy 
life in years 
due to 
ionising 
radiation 

LC-IMPACT 

 
 

Planned updates for LC-IMPACT that are relevant for RAINFOREST, especially the 

fishmeal case study, include: 

1. Climate change: to be updated with two models for impacts on marine and 

terrestrial ecosystems (Iordan et al. 2023), as well as freshwater 

ecosystems (Li et al. 2022), replacing the current spatially-generic model 

that only considers terrestrial species; 

2. Land use: to be updated to a new model that accounts for impacts on 5 

taxa, 5 land use types (previously 6) and 3 land use intensity levels (not 

considered before), including both land use and fragmentation of the land, 

which was not considered before (Scherer et al. 2023); 

3. Ocean acidification: this is a model that is currently developed in BAMBOO. 

The deliverable for the model is August 2024 and the development is on 

track, so we expect that we can use this model in RAINFOREST; 

4. Seabed damage: the development of that impact assessment model has 

just started in BAMBOO. The goal is to expand a European model for global 

coverage. If successful, that impact category will be added later in the 

project, after the final Toolbox deliverable; 

5. Overexploitation: this task will start in BAMBOO later and will build on work 

that is currently ongoing in another PhD thesis in Montpellier. This can only 

be added towards the end of the RAINFOREST project. 

 

https://bamboo-horizon.eu/
https://bamboo-horizon.eu/
https://bamboo-horizon.eu/
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3.2 ReCiPe 

Like LC-IMPACT, ReCiPe is a spatially differentiated life cycle impact assessment 

method (Huijbregts et al. 2017). In addition to endpoint impacts (e.g., biodiversity 

loss), ReCiPe also quantifies midpoint impacts (e.g., global warming). ReCiPe can be 

linked to the models in the model toolbox in the same way as LC-IMPACT, and will 

allow for the quantification of climate impacts (via the global warming potential 

indicator). The global warming potential (GWP) characterisation factors translate 

GHGs into CO2-equivalents based on the atmospheric warming potential per kg GHG 

and the atmospheric degradation rate relative to the warming potential and 

degradation per kg CO2. ReCiPe contains GWP characterisation factors for 207 GHGs 

(Huijbregts et al. 2017).  

 

Table 2. Characterisation factors of ReCiPe. The spatial coverage of all characterisation factors 

is global ( Huijbregts et al. 2017). 

Aspect Indicator Unit Pressure coverage Spatial 
resolution 

Description Model the 
indicator 
links to 

Environmental 
state 

Land use m2 cropland 
eq. 

Land use (m2 
cropland eq.) 

Generic Indicator for the 
amount of land used 

ReCiPe 

Environmental 
state 

Climate 
change 

kg CO2 eq. Climate change (kg 
CO2 eq.) 

Generic Indicator for the 
infrared radiative 

forcing 

ReCiPe 

Environmental 

state 
Water use m3 water 

consumer 
eq. 

Water consumption 

(m3 water eq.) 

Generic, 
national 
level (220 

countries) 

Indicator for 
increase in water 
consumption 

ReCiPe 

Environmental 
state 

Freshwater 
eutrophication 

kg P eq. Freshwater 
eutrophication (kg P 
eq. emission to 
freshwater) 

Generic, 
national 
level (220 
countries) 

Indicator for 
phosphorus increase 

in freshwater 

ReCiPe 

Environmental 
state 

Terrestrial 
acidification 

kg SO2 eq. Terrestrial 
acidification (kg SO2 

eq. emission to air) 

Generic, 
national 
level (220 
countries) 

Indicator for proton 
increase in natural 

soils 

ReCiPe 

Environmental 
state 

Toxicity kg 1,4-DCB 
eq. 

Terrestrial, 
freshwater, marine 
ecotoxicity and 
human toxicity 
potential (kg 1,4-
DCB eq. to soil, 
freshwater, marine 
water, and urban 
air, respectively) 

Generic Indicator for 
hazard-weighted 

increase in toxicants 

ReCiPe 

Environmental 
state 

Photochemical 
oxidant 
formation 

kg NOx eq. Photochemical 
oxidant formation 
(kg NOx eq. to air) 

Generic, 
national 
level (220 

countries) 

Indicator for 
tropospheric ozone 
increase 

ReCiPe 

Environmental 

state 

Ozone 

depletion 
CFC-11 eq. Ozone depletion 

(CFC-11 eq. to air) 
Generic Indicator 

stratospheric ozone 
ReCiPe 
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decrease 

Environmental 
state 

Ionising 
radiation 

kBq Co-60 
eq. 

Ionising radiation 
(kBq Co-60 eq. to 

air) 

Generic Indicator for 
absorbed dose 

increase 

ReCiPe 

Environmental 

state 

Particulate 
matter 
formation 

kg PM2.5 

eq. 

Particulate matter 
formation (kg PM2.5 
eq. to air) 

Generic, 
national 
level (220 
countries) 

Indicator for PM2.5 
population intake 

ReCiPe 

 

 

3.3 GLOBIO 

The GLOBIO model calculates local terrestrial species-assemblage intactness 

expressed by the mean species abundance (MSA) indicator (Schipper et al. 2020). 

MSA pressure-response relationships are derived from meta-analyses of empirical 

local pairwise comparisons of species populations in natural reference and impacted 

conditions. The GLOBIO model is typically combined with the IMAGE integrated 

assessment model (Schipper et al. 2020; Kok et al. 2023), but it has also been 

combined with the GLOBIOM model (Leclère et al. 2020). 

In RAINFOREST, two pressures that impact MSA are considered: climate change 

and land use. The pressure-response relationship for climate impacts on MSA relate 

global mean temperature change to change in MSA. Global mean temperature 

change can be related to GHG emissions to enable linking GLOBIO to GLOBIOM, 

EXIOBASE, and FABIO. There are pressure-response relationships for land use impacts 

on MSA for seven land use types (intensive cropland, low intensity cropland, 

intensive pasture, extensive pasture, forest plantations, urban areas, and secondary 

vegetation). 
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4. IMPACT INDICATORS 

4.1 GLOBIOM 

4.1.1 Native GLOBIOM indicators 

The GLOBIOM model will provide health indicators associated with a per capita 

food consumption at product level, linking the risk of disease to the consumption of 

specific food based on the Global Burden of Disease (GBD) database. Years of life 

lost and the disability adjusted life years lost due to increased risk of non-

communicable diseases (esophageal cancer, colon and rectum cancer, breast 

cancer, ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, 

tracheal, bronchus, and lung cancer, ischemic heart disease, diabetes mellitus type 

2), associated to specific dietary risks (diet too low in fruits,  vegetables, nuts and 

seeds, milk or legumes; diet too high in red meat) will be quantified for each dietary 

change scenario. Quantification of the burden of disease attributable to each dietary 

factor-disease pair will be based on the following parameters: mean per capita food 

consumption at product level (GLOBIOM output), standard deviation of intake by 

country, risk exposure definitions (e.g. exposure to a diet low in fruits is defined as 

average daily consumption of less than 250 grams per day of fruits), as well as  the 

effect size of the dietary factor on disease endpoint (Stanaway et al. 2018).   

Furthermore, the GLOBIOM model will provide assessment of prevalence of 

undernourishment (PoU) impacts in each scenario. PoU is calculated using three key 

factors: the mean dietary energy availability (kcal per person per day), the mean 

minimum dietary energy requirement (MDER) and the coefficient of variation of the 

domestic distribution of dietary energy availability in a country (Hasegawa et al. 

2019). The food distribution in a country is assumed to follow a log-normal 

distribution, which is defined by the mean food calorie availability and the equity 

of the food distribution. The proportion of the population under the cut-off point 

(MDER) is then defined as the prevalence of under-nourishment. The calorie-based 

food consumption (kcal per person per day) output from the GLOBIOM model is used 

for the mean food calorie availability.  

Finally, the GLOBIOM model will also provide an assessment of the value added in 
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the agricultural sector. The value added indicator provides for livestock and crop 

sub-sectors and for the model 59 regions an information on the economic output of 

these sectors, in USD2000. The projections rest on the combination of GLOBIOM 

projections for the market value of production (based on price and production 

volume projections in primary product equivalents, further aggregated across 

products) with GTAP data for year 2000 (ratio of value added to value of production, 

based on data for the year 2000 and assumed constant in projections). 

Regarding the impact on biodiversity, GLOBIOM estimations are expressed through 

the Biodiversity Intactness Index (BII) and Fraction Globally Remaining Species 

(FGRS) related to the Land use pressure. Linking GLOBIOM to impact models such as 

GLOBIO or LC-IMPACT will not only allow to reflect on a different aspect of 

biodiversity, but also to estimate the biodiversity impacts related to additional 

pressures (Schipper et al. 2020; Verones et al. 2020). 

 

4.1.2 GLOBIOM and LC-IMPACT 

GLOBIOM will first be linked to LC-IMPACT to calculate impact on freshwater and 

ecosystem quality in terms of PDF, using the characterisation factors provided by 

LC-IMPACT. LC-IMPACT characterisation factors can be linked to the following 

GLOBIOM pressures related to agricultural and forestry activities: climate change, 

land use, ecotoxicity, freshwater eutrophication, and water stress. Using 

characterisation factors (impact per unit of elementary flow) instead of coefficients 

(impact per ton of product) allows to estimate an impact while staying consistent 

with GLOBIOM’s modelling on the link between productivity and emissions (i.e., ton 

of environmental flow per ton of product), which can be affected by scenario-

specific assumptions and endogenous modelling on changes in production 

technologies. 

PDF characterisation factors for climate change and water stress pressures will be 

linked respectively to the GHG emissions and to water used for irrigation. The land 

use characterisation factors refer to the land occupation and transformation per 

land use type. To enable the linkage with GLOBIOM land use information, the land 

use categories of GLOBIOM will be linked to the land use categories of LC-IMPACT. 

Regarding the freshwater eutrophication impact, the LC-IMPACT characterisation 
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factors are related to the Phosphorus emissions. Before the linkage with LC-IMPACT, 

GLOBIOM’s Phosphorus balance will first be developed, following a similar 

methodology than for reactive nitrogen (Chang et al. 2021). To quantify terrestrial 

and freshwater ecotoxicity impacts, ecotoxic emissions are required. As these are 

currently not covered by GLOBIOM, a first step to enable the quantification of 

ecotoxicity impacts is to add the ecotoxic flows covered by LC-IMPACT to GLOBIOM.  

Finally, for additional pressures, such as photochemical ozone formation, or 

terrestrial acidification, as well as for impacts unrelated to agriculture systems, 

downstream or upstream of the value chain, additional data would be needed since 

GLOBIOM does not estimate the emissions or environmental flows associated to it. 

This additional information could be provided, for example, via life cycle inventory 

datasets, such as Ecoinvent (Wernet et al. 2016), or EEMRIO datasets, such as 

EXIOBASE (Stadler et al. 2018), which, combined with LC-IMPACT characterisation 

factors, could provide an impact per ton of product. To consider impacts of such 

additional pressures, we will explore whether these coefficients could be linked to 

GLOBIOM’s production output and possibly integrate GLOBIOM’s assumptions.  

 

4.1.3 GLOBIOM and ReCiPe 

GLOBIOM uses the ReCiPe provides pressure-response factors translating emissions 

of specific GHG emissions to global warming. GLOBIOM and ReCiPe are linked by 

applying the ReCiPe’s GHG-specific pressure-response factors to GLOBIOM’s GHG-

specific emissions. 

 

4.1.4 GLOBIOM and GLOBIO 

GLOBIOM will be linked dynamically to GLOBIO in order to estimate impacts on 

ecosystem integrity in Mean Species Abundance (MSA). The GLOBIOM model produces 

spatially-explicit land use maps that can be directly linked to the GLOBIO model to 

quantify cell-level MSA (Leclère et al. 2020), related to the Land use impact. Due to 

the spatial resolution of such linkage, as well as lack of dynamic information on some 

pressure drivers (e.g., roads and urban area expansion), it remains difficult to link 

more pressures. However, we will improve the the land use pressure between the 
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two models, by refining the representation of management intensity of different 

land uses through aligning the land use categories. Additionally, we will explore the 

possibility to estimate an MSA impact due to climate change based on GLOBIO’s 

pressure impact relationship, linked to global mean temperature increase. This 

increase would first need to be estimated within GLOBIOM based on the calculated 

GHG emissions.  

 

4.1.5 GLOBIOM and agricultural employment data 

The agricultural sector remains a cornerstone of global employment, serving as a 

vital source of livelihood for millions of people worldwide, albeit with varying 

degrees of prominence across regions. According to the Food and Agriculture 

Organization (FAO 2023), the employment share in agriculture, including forestry 

and fishery, ranges from 48% in Africa to 5% in Europe as of 2021. This significant 

variation underscores the diverse economic structures and levels of development 

across different regions. Notably, in low- and middle-income economies, primary 

production dominates employment, often resulting in relatively low wages and 

incomes (Davis et al. 2023). Even if representing a low share of total employment in 

developed countries, the employment and income in the agricultural sector can be 

important determinants of sustainability transitions. 

As global agricultural production undergoes a transition towards sustainability and 

efficiency, understanding the dynamics of labour utilization, productivity, and their 

implications for food production, as well as societal transformation, becomes 

crucial. This task endeavours to develop comprehensive employment indicators 

within the agricultural sector. Specifically, it aims to measure the number of 

workers, wage structures, and value-added metrics stratified by crop and livestock 

activities on a global scale, with a particular focus on the European Union (EU) at 

the NUTS2 resolution. 

An essential consideration in this endeavour is the varying intensity of labour use 

across different production technologies, capturing the heterogeneity of labour 

requirements within the sector. To address this complexity, a database delineating 

labour requirements per agricultural activity, production system (i.e., high input 

intensive, low input extensive systems), and country, along with corresponding wage 
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and value-added metrics, is being developed. These metrics will be integrated into 

the GLOBIOM model to facilitate scenario analyses pertaining to employment and 

sectoral effects. 

A preliminary study by Vittis et al. (2022) endeavours to quantify labour 

requirements across 12 major crop and livestock productions globally while 

accounting for variations in farm sizes. Bodirsky et al. (2023) describe the 

methodology used in the MAGPIE model, which entails the computation of crop- and 

livestock-specific capital and labour requirements using FAOSTAT and USDA 

datasets. Within this framework, the allocation of factor requirements between 

capital and labour is determined based on labour-to-capital ratios. Moreover, 

potential integration with EXIOBASE is envisaged to capture upstream and 

downstream sectors, enabling dynamic responses to scenario changes such as 

alterations in commodity production. Our estimation approach involves calculating 

country- and activity-specific labour requirements, drawing inspiration from both 

studies and extending the methodology to incorporate heterogeneity in production 

technologies. To achieve these objectives, two primary data streams are being 

utilized. Error! Reference source not found. presents an overview of indicators 

used in the estimation. Firstly, at a global scale, data from sources like FAOSTAT 

and ILOSTAT labour statistics serve as foundational inputs. FAOSTAT provides 

essential employment indicators annually, supplemented by ILOSTAT-modelled 

estimates to enhance coverage, particularly in rural areas. Key indicators from 

FAOSTAT relevant to this task include employment in agriculture, agricultural 

wages, forestry, and fishing, agriculture value added per worker, and the share of 

agricultural employment in total employment. Additionally, a comprehensive 

assessment of wages in agriculture is undertaken globally, incorporating data from 

global sources. 

Secondly, Eurostat data is leveraged to estimate and quantify labour 

requirements at a finer resolution, specifically at the NUTS2  level within the EU. 

This dataset offers multiple employment indicators (Nomenclature of Territorial 

Units for Statistics, level 2 corresponds to regions/states/provinces within an EU 

member state), encompassing various labour characteristics such as employment by 

age, gender, family vs. non-family employment and regular vs. irregular labour 

arrangements. This data source offers an advantage due to its disaggregated nature, 



D2.1 — Initial toolbox design including the selection and implementation of environmental and socio-
economic SDG indicators 

30 

enabling the generation of regionally diverse metrics. Additionally, there is potential 

for validation through the Farm Accountancy Data Network (FADN) database. 

Moreover, insights from the United States Department of Agriculture (USDA), the 

Austrian Federal Institute of Agricultural Economics, and the German KTBL are 

considered to benchmark or refine the estimation methodology based on activity-

level costs. 

In summary, this initiative seeks to comprehensively analyse labour dynamics 

within the agricultural sector, providing valuable insights for policy formulation, 

resource allocation, and sustainable development efforts globally and within the EU. 

The final product comprises a database detailing labour requirements per 

agricultural activity, management systems, and region, alongside associated wages. 

This database will be integrated into GLOBIOM to analyse employment scenarios and 

sectoral effects further. 

 

Table 3. Labour indicators in the agricultural sector. 

EU and Global 
Sources 

Indicator Temporal 
Resolution 

Spatial 
Resolution 

Data Source 

Global Employment in agriculture, forestry, and 
fishery (ILOSTAT) 

Yearly Country FAOSTAT 
ILOSTAT 

Monthly earnings per employee (agriculture, 
forestry, fishery) (FAOSTAT) 

Yearly Country FAOSTAT 

Agricultural Value Added (FAOSTAT) Yearly Country FAOSTAT 

EU Employment in Agriculture Yearly NUTS2 EUROSTAT 

Hours Worked Yearly NUTS2 EUROSTAT 

Wages and Earnings Yearly NUTS2 EUROSTAT 

Agricultural Value Added (Eurostat) Yearly Country EUROSTAT 
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4.1.6 Impact indicators related to GLOBIOM 

Table 4. Current impact indicators native to GLOBIOM and quantifiable via model links.  The spatial 

coverage of all indicators native to GLOBIOM is global, the spatial resolution captures GLOBIOM 

regions (individual countries or aggregates, likely in the range of 60 regions), the temporal 

coverage ranges from 2000 to 2100 in a temporal resolution of 10 years (Havlík et al. 2014; Leclère 

et al. 2020; Chang et al. 2021).  

Aspect Indicator Unit Taxa 
coverage 

Pressure 
coverage 

Sectoral/ 
product 
coverage 

Description Model the 
indicator 
links to 

Biodiversity Biodiversity 
Intactness 
Index (BII) 

fraction All 
terrestrial 
taxonomic 
groups 

Land use Agriculture, 
forestry, 
conservation 

Indicator for 
global species 
extinctions due to 
habitat conversion 
(via the 
countryside-SAR) 

GLOBIOM 

Biodiversity Fraction of 
globally 
remaining 
species 
(FGRS) 

fraction Mammals, 
birds, 
reptiles, 
amphibians, 
and plants 

Land use Crop, livestock, 
forestry, land 
use change 
(further detail 
within crop and 
livestock 
products 
possible, as 
well as split 
CO2, CH4, N2O) 

Indicator for 
global species 
extinctions due to 
habitat conversion 
(via the 
countryside-SAR) 

GLOBIOM 

Biodiversity Mean 
Species 
Abundance 
(MSA 

MSA.ha Terrestrial 
plants, 
birds, and 
mammals 

Land use Agriculture, 
forestry 

Indicator 
measuring the 
intactness of the 
local species 
composition 

GLOBIO 

Biodiversity Potentially 
Disappeared 
Fraction 
(PDF) 

PDF.y Mammals, 
birds, 
reptiles, 
amphibians, 
and plants 

Land use, 
climate 
change, 
freshwater 
eutrophication, 
ecotoxicity 

Agriculture, 
forestry 

Indicator for 
global species 
extinctions 

LC-IMPACT 

Climate Greenhouse 
gas (GHG) 
emissions  

tons of 
CO2 
equivalent 

na Climate AFOLU, land 
use change 

Indicator for 
anthropogenic 
pressure on 
climate system 

ReCiPe 

Socio-
economic 

Land use hectares na Land use Crop 
bioenergy, crop 
others, 
livestock, 
forestry, 
conservation 
(protection & 
restoration), 
unmanaged 
ecosystems 
(forest and 
non-forest) 

Indicator for the 
amount of land 
used 

GLOBIOM 

Socio-
economic 

Production, 
Consumption 
and Trade 
physical 
flows 

tons of 
fresh 
matter of 
primary 
product 
equivalent 

na na 18 crop 
products, 5 
livestock 
products, 1st 
generation 
biofuels, 2nd 
generation 
biofuels, a few 
aggregated 
forest products 

Indicator for 
biomass supply 
chains 

GLOBIOM 

Socio-
economic 

Price index ratio, 
from 0 to 
very large 
number, 
with 1 

na na Crop and 
livestock 
sectors, some 
intermediate 
level between 

Indicator for food 
access and 
producer revenue 

GLOBIOM 
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when 
price = 
reference 
price 

individual 
commodities 
and sector 
aggregate 

Socio-
economic 

Value Added USD2000 na na Crop and 
livestock 
sectors 

Indicator for 
biomass supply 
chains 

GLOBIOM 

Socio-
economic 

Number of 
people at 
risk of 
hunger 

number of 
people 

na na Agriculture Indicator for food 
security 

GLOBIOM 

Socio-
economic 

Nitrogen 
balance 
(inputs, 
outputs, 
surplus) for 
agricultural 
sector 
(cropland 
soils, 
pasture soils 
and 
livestock) 

tons of 
nitrogen 

na na Crop and 
livestock 
sectors 

Indicator for 
nutrient cycle 

GLOBIOM 

 
 

4.2 EXIOBASE 

4.2.1 Native EXIOBASE indicators 

EXIOBASE includes environmental extensions such as GHG emissions and land use. 

By linking these to impact assessment models, such as LC-IMPACT, these 

environmental extensions can be aggregated into environmental impacts, such as 

global warming potential and biodiversity loss. In addition, EXIOBASE includes 

several (country- and sector-level) socioeconomic indicators (from which other 

macroeconomic indicators such as GDP can be calculated): 

• Final consumption (per household, non-profit organizations serving 

households, government and capital formation)  

• Imports/Exports  

• Operational surplus   

• Taxes/subsidies of production  

• Value added 

In addition, EXIOBASE includes the following labour indicators per sector: 

• Compensation of employees in Million Euro per skill level (low-, medium- 

and high-skilled)  

• Employment in both, number of persons and working hours, per skill level 

and gender (male/female)  
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• Total vulnerable employment (in hours worked)  

 

4.2.2 Linking EXIOBASE to LC-IMPACT 

LC-IMPACT can be applied to either life cycle inventories for a bottom-up LCA or 

it can be coupled to an EEMRIO like EXIOBASE for more large-scale assessments. This 

has been done previously for land and water impacts (Verones et al. 2017). Linking 

EXIOBASE and LC-IMPACT enables the quantification of national production and 

consumption biodiversity footprints.  

The linking of EXIOBASE and the combined FABIO/EXIOBASE database to LC-

IMPACT follows a soft linking approach. The soft linking allows the models to stay 

separated, while we provide software modules for the linking. The linking is 

implemented in Pymrio  as a new characterization method, based on a bridging table 

that links the elementary flow names in the LC-IMPACT to the stressor names in 

EXIOBASE (Stadler 2021). To increase reusability and follow the latest developments 

in the field, we decided to implement the linking through the elementary flow names 

proposed by the GLAM (Global Guidance on Environmental Life Cycle Impact 

Assessment Indicators) initiative of the life cycle initiative hosted by UN 

Environment. The new version of LC-IMPACT will use the same elementary flow 

names as the default naming convention. EXIOBASE stressor names will be translated 

to the GLAM elementary flow names, which will then facilitate the linking to LC-

IMPACT (Figure 1). 

The current status of the Pymrio code development can be followed under the 

“char_update” branch of the pymrio github online repository 

(https://github.com/IndEcol/pymrio/tree/char_update), which will be merged into 

the main code upon finalization.  

 

https://github.com/IndEcol/pymrio/tree/char_update
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Figure 2. Linking approach for EXIOBASE and LC-IMPACT via GLAM elementary flow names. 

  

4.2.3 EXIOBASE and ReCiPe 

Because EXIOBASE contains built-in environmental extensions for climate impacts 

(Table 3), no link with ReCiPe will be established.  

 

4.2.4 EXIOBASE and GLOBIO 

EXIOBASE provides detailed data on the global economy and its interactions with 

the environment, while GLOBIO provides information on the impacts of human 

activities on biodiversity and ecosystems. The sources of these models are publicly 

available and can be accessed through their repositories: 

https://doi.org/10.5281/zenodo.3583070 and https://globio.info.  

Similar to the EXIOBASE and LC-IMPACT linking, we have opted for a soft/dynamic 

linking approach that keep the model pipelines independent as well as their file 

formats. The linking is done through the MRIO python module Pymrio, and other 

additional modules as needed.  

The first linking step involves GLOBIO providing characterisation factors in the 

https://doi.org/10.5281/zenodo.3583070
https://globio.info/
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EXIOBASE regional classification. Then, the GLOBIO and EXIOBASE team will establish 

a correspondence table for stressor matching. Pymrio/EXIOBASE will establish a data 

pipeline to obtain these factors and use them to characterize EXIOBASE stressors 

(Figure 3). 

For the code development we follow an open source approach. The current status 

of the code development can be followed under the “char_update” branch of the 

pymrio github repository (https://github.com/IndEcol/pymrio/tree/char_update), 

which will be merged into the main code upon finalization), which will be merged 

into the main code upon finalization.   

 

 

Figure 3: Simplified EXIOBASE / GLOBIO linking flow chart.  

 

4.2.5 Impact indicators related to EXIOBASE 

Table 5. Current impact indicators native to EXIOBASE and quantifiable via model links. All 

indicators native to EXIOBASE cover 200 products/ 163 industries, have a global coverage, a spatial 

resolution of 44 countries and RoW regions and a temporal coverage from 1995 – 2022 (Stadler et 

al. 2018). 

Aspect Indicator Unit Model the 
indicator links to 

Climate GHG emissions (GWP100) | Problem oriented approach: 
baseline (CML, 2001) | GWP100 (IPCC, 2007) 

kg CO2 eq. EXIOBASE 

https://github.com/IndEcol/pymrio/tree/char_update
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Climate Carbon dioxide (CO2) IPCC categories 1 to 4 and 6 to 7 
(excl land use, land use change and forestry) 

Gg EXIOBASE 

Climate Methane (CH4) IPCC categories 1 to 4 and 6 to 7 (excl land 
use, land use change and forestry) 

Gg EXIOBASE 

Climate Nitrous Oxide (N2O) IPCC categories 1 to 4 and 6 to 7 (excl 
land use, land use change and forestry) 

Gg EXIOBASE 

Climate Carbon dioxide (CO2) CO2EQ IPCC categories 1 to 4 and 6 
to 7 (excl land use, land use change and forestry) 

Gg CO2-eq EXIOBASE 

Climate Methane (CH4) CO2EQ IPCC categories 1 to 4 and 6 to 7 
(excl land use, land use change and forestry) 

Gg CO2-eq EXIOBASE 

Climate Nitrous Oxide (N2O) CO2EQ IPCC categories 1 to 4 and 6 to 
7 (excl land use, land use change and forestry) 

Gg CO2-eq EXIOBASE 

Climate Carbon dioxide (CO2) Fuel combustion and cement Gg EXIOBASE 

Climate Carbon dioxide (CO2) Fuel combustion Gg EXIOBASE 

Climate GHG emissions (GWP100) | Problem oriented approach: 
baseline (CML, 1999) | GWP100 (IPCC, 2007) 

kg CO2 eq. EXIOBASE 

Climate GHG emissions (GWP100min) | Problem oriented approach: 
non baseline (CML, 1999) | net GWP100 min(Houghton et 
al., 2001) 

kg CO2 eq. EXIOBASE 

Climate GHG emissions (GWP100max) | Problem oriented approach: 
non baseline (CML, 1999) | net GWP100 max(Houghton et 
al., 2001) 

kg CO2 eq. EXIOBASE 

Climate GHG emissions (GWP20) | Problem oriented approach: non 
baseline (CML, 1999) | GWP20 (IPCC, 2007) 

kg CO2 eq. EXIOBASE 

Climate GHG emissions (GWP500) | Problem oriented approach: non 
baseline (CML, 1999) | GWP500 (IPCC, 2007) 

kg CO2 eq. EXIOBASE 

Climate GHG emissions AR5 (GWP100) | GWP100 (IPCC, 2010) kg CO2 eq. EXIOBASE 

Environ- 
mental state 

EPS | Damage Approach | EPS (Steen, 1999) elu EXIOBASE 

Environ- 
mental state 

Damage to Ecosystem Quality caused by ecotoxic emissions 
(H.A) | ECOINDICATOR 99 (H.A) | Damage to Ecosystem 
Quality caused by ecotoxic emissions (H.A) 

PDF*m2*yr EXIOBASE 

Environ- 
mental state 

Damage to Ecosystem Quality caused by the combined 
effect of acidification and eutrophication (H.A) | 
ECOINDICATOR 99 (H.A) | Damage to Ecosystem Quality 
caused by the combined effect of acidification and 
eutrophication (H.A) 

PDF*m2*yr EXIOBASE 

Environ- 
mental state 

Damage to Ecosystem Quality caused by ecotoxic emissions 
(E.E)) | ECOINDICATOR 99 (E.E) | Damage to Ecosystem 
Quality caused by ecotoxic emissions (E.E) 

PDF*m2*yr EXIOBASE 

Environ- 
mental state 

Damage to Ecosystem Quality caused by the combined 
effect of acidification and eutrophication (E.E) | 
ECOINDICATOR 99 (E.E) | Damage to Ecosystem Quality 
caused by the combined effect of acidification and 
eutrophication (E.E) 

PDF*m2*yr EXIOBASE 

Environ- 
mental state 

Damage to Ecosystem Quality caused by ecotoxic emissions 
(I.I) | ECOINDICATOR 99 (I.I) | Damage to Ecosystem 
Quality caused by ecotoxic emissions (I.I) 

PDF*m2*yr EXIOBASE 

Environ- 
mental state 

Damage to Ecosystem Quality caused by the combined 
effect of acidification and eutrophication (I.I) | 
ECOINDICATOR 99 (I.I) | Damage to Ecosystem Quality 
caused by the combined effect of acidification and 
eutrophication (I.I) 

PDF*m2*yr EXIOBASE 

Environ- 
mental state 

Unused Domestic Extraction kt EXIOBASE 
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Environ- 
mental state 

Water Consumption Green - Agriculture Mm3 EXIOBASE 

Environ- 
mental state 

Water Consumption Blue - Agriculture Mm3 EXIOBASE 

Environ- 
mental state 

Water Consumption Blue - Livestock Mm3 EXIOBASE 

Environ- 
mental state 

Water Consumption Blue - Manufacturing Mm3 EXIOBASE 

Environ- 
mental state 

Water Consumption Blue - Electricity Mm3 EXIOBASE 

Environ- 
mental state 

Water Consumption Blue - Domestic Mm3 EXIOBASE 

Environ- 
mental state 

Water Consumption Blue - Total Mm3 EXIOBASE 

Environ- 
mental state 

Water Withdrawal Blue - Manufacturing Mm3 EXIOBASE 

Environ- 
mental state 

Water Withdrawal Blue - Electricity Mm3 EXIOBASE 

Environ- 
mental state 

Water Withdrawal Blue - Domestic Mm3 EXIOBASE 

Environ- 
mental state 

Water Withdrawal Blue - Total Mm3 EXIOBASE 

Environ- 
mental state 

ozone layer depletion (ODP steady state) | Problem 
oriented approach: baseline (CML, 1999) | ODP steady 
state (WMO, 2003) 

kg CFC-11 eq. EXIOBASE 

Environ- 
mental state 

Freshwater aquatic ecotoxicity (FAETP inf) | Problem 
oriented approach: baseline (CML, 1999) | FAETP inf. 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Marine aquatic ecotoxicity (MAETP inf) | Problem oriented 
approach: baseline (CML, 1999) | MAETP inf. (Huijbregts, 
1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Freshwater sedimental ecotoxicity (FSETP inf) | Problem 
oriented approach: non baseline (CML, 1999) | FSETP inf. 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Marine sedimental ecotoxicity (MSETP inf) | Problem 
oriented approach: non baseline (CML, 1999) | MSETP inf. 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Terrestrial ecotoxicity (TETP inf) | Problem oriented 
approach: baseline (CML, 1999) | TETP inf.(Huijbregts, 
1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Freshwater aquatic ecotoxicity (FAETP20) | Problem 
oriented approach: non baseline (CML, 1999) | FAETP 20 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Marine aquatic ecotoxicity (MAETP20) | Problem oriented 
approach: non baseline (CML, 1999) | MAETP 20 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Freshwater sedimental ecotoxicity (FSETP20) | Problem 
oriented approach: non baseline (CML, 1999) | FSETP 20 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Marine sedimental ecotoxicity (MSETP20) | Problem 
oriented approach: non baseline (CML, 1999) | MSETP 20 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Freshwater aquatic ecotoxicity (FAETP100) | Problem 
oriented approach: non baseline (CML, 1999) | FAETP 100 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Marine aquatic ecotoxicity (MAETP100) | Problem oriented 
approach: non baseline (CML, 1999) | MAETP 100 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Freshwater sedimental ecotoxicity (FSETP100) | Problem 
oriented approach: non baseline (CML, 1999) | FSETP 100 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 
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Environ- 
mental state 

Marine sedimental ecotoxicity (MSETP100) | Problem 
oriented approach: non baseline (CML, 1999) | MSETP 100 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Terrestrial ecotoxicity (TETP100) | Problem oriented 
approach: non baseline (CML, 1999) | TETP 100 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

human toxicity (HTP500) | Problem oriented approach: non 
baseline (CML, 1999) | HTP 500 (Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Freshwater aquatic ecotoxicity (FAETP500) | Problem 
oriented approach: non baseline (CML, 1999) | FAETP 500 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Marine aquatic ecotoxicity (MAETP500) | Problem oriented 
approach: non baseline (CML, 1999) | MAETP 500 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Freshwater sedimental ecotoxicity (FSETP500) | Problem 
oriented approach: non baseline (CML, 1999) | FSETP 500 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Marine sedimental ecotoxicity (MSETP500) | Problem 
oriented approach: non baseline (CML, 1999) | MSETP 500 
(Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

Terrestrial ecotoxicity (TETP500) | Problem oriented 
approach: non baseline (CML, 1999) | TETP 500 
(Huijbregts, 1999 & 2000) TETP 500 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environ- 
mental state 

photochemical oxidation (high NOx) | Problem oriented 
approach: baseline (CML, 1999) | POCP (Jenkin & Hayman, 
1999; Derwent et al. 1998; high NOx) 

kg ethylene eq. EXIOBASE 

Environ- 
mental state 

photochemical oxidation (low NOx) | Problem oriented 
approach: non baseline (CML, 1999) | POCP (Andersson-
Skï¿½ld et al. 1992; low NOx) 

kg ethylene eq. EXIOBASE 

Environ- 
mental state 

photochemical oxidation (MIR; very high NOx) | Problem 
oriented approach: non baseline (CML, 1999) | MIR 1997; 
very high NOx (Carter, 1994, 1997, 1998;Carter, Pierce, 
Luo &  Malkina, 1995  

kg formed ozone EXIOBASE 

Environ- 
mental state 

photochemical oxidation (MOIR; high NOx) | Problem 
oriented approach: non baseline (CML, 1999) | MOIR; high 
NOx (Carter, 1994, 1997, 1998;Carter, Pierce, Luo &  
Malkina, 1995) 

kg formed ozone EXIOBASE 

Environ- 
mental state 

photochemical oxidation (EBIR; low NOx) | Problem 
oriented approach: non baseline (CML, 1999) | EBIR; low 
NOx (Carter, 1994, 1997, 1998;Carter, Pierce, Luo &  
Malkina, 1995) 

kg formed ozone EXIOBASE 

Environ- 
mental state 

acidification (incl. fate, average Europe total, A&B) | 
Problem oriented approach: baseline (CML, 1999) | AP ( 
Huijbregts, 1999; average Europe total, A&B) 

kg SO2 eq. EXIOBASE 

Environ- 
mental state 

acidification (fate not incl.) | Problem oriented approach: 
non baseline (CML, 1999) | AP (Hauschild & Wenzel (1998) 

kg SO2 eq. EXIOBASE 

Environ- 
mental state 

eutrophication (fate not incl.) | Problem oriented 
approach: baseline (CML, 1999) | EP (Heijungs et al. 1992) 

kg PO4--- eq. EXIOBASE 

Environ- 
mental state 

eutrophication (incl. fate, average Europe total, A&B) | 
Problem oriented approach: non baseline (CML, 1999) | EP 
( Huijbregts, 1999; average Europe total, A&B) 

kg NOx eq. EXIOBASE 

Environ- 
mental state 

odour | Problem oriented approach: non baseline (CML, 
1999) | 1/OTV 

m3 EXIOBASE 

Environ- 
mental state 

Climate change midpoint | ILCD recommended CF | Global 
warming potential 100 years 

kg CO2-Equivalents EXIOBASE 

Environ- 
mental state 

Climate change endpoint, human health | ILCD 
recommended CF | Disability Adjusted Life Years (DALY) 

DALY EXIOBASE 

Environ- 
mental state 

Climate change endpoint, ecosystems | ILCD recommended 
CF | Potentially Disappeared Fraction of species (PDF) 

PDF EXIOBASE 

Environ- 
mental state 

Particulate matter/Respiratory inorganics midpoint | ILCD 
recommended CF | emission-weighed average PM2.5 
equivalent 

kg PM2.5-eq EXIOBASE 

Environ- 
mental state 

Particulate matter/Respiratory inorganics endpoint | ILCD 
recommended CF | Disability Adjusted Life Years (DALY) 

DALY EXIOBASE 
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Environ- 
mental state 

Photochemical ozone formation midpoint, human health | 
ILCD recommended CF | Photochemical ozone creation 
potential (POCP) 

kg-C2H4 equivalents EXIOBASE 

Environ- 
mental state 

Photochemical ozone formation endpoint, human health | 
ILCD recommended CF | Disability Adjusted Life Years 
(DALY) 

DALY EXIOBASE 

Environ- 
mental state 

Acidification midpoint | ILCD recommended CF | 
Accumulated Exceedance (AE) 

Accumulated 
Exceedance (AE) 

EXIOBASE 

Environ- 
mental state 

Acidification endpoint | ILCD recommended CF | Change in 
potentially not occuring fraction of plant species per 
change in base saturation 

PDF EXIOBASE 

Environ- 
mental state 

Eutrophication terrestrial midpoint | ILCD recommended CF 
| Accumulated Exceedance (AE) 

Accumulated 
Exceedance (AE) 

EXIOBASE 

Environ- 
mental state 

Eutrophication marine midpoint | ILCD recommended CF | 
Potentially Disappeared Fraction of species (PDF) 

kg-N equivalent EXIOBASE 

Environ- 
mental state 

Ecotoxicity freshwater midpoint | ILCD recommended CF | 
Comparative Toxic Unit for ecosystems (CTUe) 

CTUe = PAF.m3.year EXIOBASE 

Environ- 
mental state 

Ecotoxicity freshwater endpoint | ILCD recommended CF | 
Potentially Disappeared Fraction of species (PDF) 

PDF.m3.year EXIOBASE 

Environ- 
mental state 

Nitrogen kg EXIOBASE 

Environ- 
mental state 

Phosphorous kg EXIOBASE 

Environ- 
mental state 

PM101 kg EXIOBASE 

Environ- 
mental state 

PM251 kg EXIOBASE 

Environ- 
mental state 

SOx1 kg EXIOBASE 

Environ- 
mental state 

NOx1 kg EXIOBASE 

Environ- 
mental state 

Domestic Extraction Used - Crop and Crop Residue kt EXIOBASE 

Environ- 
mental state 

Domestic Extraction Used - Grazing and Fodder kt EXIOBASE 

Environ- 
mental state 

Domestic Extraction Used - Forestry and Timber kt EXIOBASE 

Environ- 
mental state 

Domestic Extraction Used â“ Fisheries kt EXIOBASE 

Environ- 
mental state 

Domestic Extraction Used - Non-metalic Minerals kt EXIOBASE 

Environ- 
mental state 

Domestic Extraction Used - Iron Ore kt EXIOBASE 

Environ- 
mental state 

Domestic Extraction Used - Non-ferous metal ores kt EXIOBASE 

Environ- 
mental state 

Unused Domestic Extraction - Crop and Crop Residue kt EXIOBASE 

Environ- 
mental state 

Unused Domestic Extraction - Grazing and Fodder kt EXIOBASE 

Environ- 
mental state 

Unused Domestic Extraction - Forestry and Timber kt EXIOBASE 
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Environ- 
mental state 

Unused Domestic Extraction â“ Fisheries kt EXIOBASE 

Environ- 
mental state 

Unused Domestic Extraction - Coal and Peat kt EXIOBASE 

Environ- 
mental state 

Unused Domestic Extraction - Oil and Gas kt EXIOBASE 

Environ- 
mental state 

Unused Domestic Extraction - Non-metalic Minerals kt EXIOBASE 

Environ- 
mental state 

Unused Domestic Extraction - Iron Ore kt EXIOBASE 

Environ- 
mental state 

Unused Domestic Extraction - Non-ferous metal ores kt EXIOBASE 

Environ- 
mental state 

Land use Crop, Forest, Pasture km2 EXIOBASE 

Environ- 
mental state 

Fresh water Ecotoxicity (USEtox) | USEtox2008 | CTUe 
(Rosenbaum et al., 2008) 

PAF m3.day EXIOBASE 

Environ-
mental state 

Terrestrial ecotoxicity (TETP20) | Problem oriented 
approach: non baseline (CML, 1999) | TETP 20 (Huijbregts, 
1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Environmental 
state 

Potentially disappeared fraction of species (PDF) PDF.yr LC-IMPACT 

Environmental 
state 

Mean species abundance (MSA) MSA.ha GLOBIO 

Human health Human toxicity (USEtox) | USEtox2008 | CTUh (Rosenbaum 
et al., 2008) 

cases EXIOBASE 

Human health Carcinogenic effects on humans (H.A) | ECOINDICATOR 99 
(H.A) | Carcinogenic effects on humans (H.A) 

DALY EXIOBASE 

Human health Respiratory effects on humans caused by organic 
substances (H.A) | ECOINDICATOR 99 (H.A) | Respiratory 
effects on humans caused by organic substances (H.A) 

DALY EXIOBASE 

Human health Respiratory effects on humans caused by inorganic 
substances (H.A) | ECOINDICATOR 99 (H.A) | Respiratory 
effects on humans caused by inorganic substances (H.A) 

DALY EXIOBASE 

Human health Damages to human health caused by climate change (H.A) | 
ECOINDICATOR 99 (H.A) | Damages to human health caused 
by climate change (H.A) 

DALY EXIOBASE 

Human health Carcinogenic effects on humans (E.E) | ECOINDICATOR 99 
(E.E) | Carcinogenic effects on humans (E.E) 

DALY EXIOBASE 

Human health Respiratory effects on humans caused by organic 
substances (E.E) | ECOINDICATOR 99 (E.E) | Respiratory 
effects on humans caused by organic substances (E.E) 

DALY EXIOBASE 

Human health Respiratory effects on humans caused by inorganic 
substances (E.E) | ECOINDICATOR 99 (E.E) | Respiratory 
effects on humans caused by inorganic substances (E.E) 

DALY EXIOBASE 

Human health Damages to human health caused by climate change (E.E) | 
ECOINDICATOR 99 (E.E) | Damages to human health caused 
by climate change (E.E) 

DALY EXIOBASE 

Human health Carcinogenic effects on humans (I.I) | ECOINDICATOR 99 
(I.I) | Carcinogenic effects on humans (I.I) 

DALY EXIOBASE 

Human health Respiratory effects on humans caused by organic 
substances (I.I) | ECOINDICATOR 99 (I.I) | Respiratory 
effects on humans caused by organic substances (I.I) 

DALY EXIOBASE 

Human health Respiratory effects on humans caused by inorganic 
substances (I.I) | ECOINDICATOR 99 (I.I) | Respiratory 
effects on humans caused by inorganic substances (I.I) 

DALY EXIOBASE 

Human health Damages to human health caused by climate change (I.I) | 
ECOINDICATOR 99 (I.I) | Damages to human health caused 
by climate change (I.I) 

DALY EXIOBASE 
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Human health human toxicity (HTP inf) | Problem oriented approach: 
baseline (CML, 1999) | HTP inf. (Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Human health human toxicity (HTP20) | Problem oriented approach: non 
baseline (CML, 1999) | HTP 20 (Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Human health human toxicity (HTP100) | Problem oriented approach: non 
baseline (CML, 1999) | HTP 100 (Huijbregts, 1999 & 2000) 

kg 1,4-
dichlorobenzene eq. 

EXIOBASE 

Human health Human toxicity midpoint, cancer effects | ILCD 
recommended CF | Comparative Toxic Unit for human 
(CTUh) 

CTUh/kg = cases EXIOBASE 

Human health Human toxicity midpoint, non-cancer effects | ILCD 
recommended CF | Comparative Toxic Unit for human 
(CTUh) 

CTUh = cases EXIOBASE 

Human health Human toxicity endpoint, cancer effects | ILCD 
recommended CF | Disability Adjusted Life Years (DALY) 

DALY EXIOBASE 

Human health Human toxicity endpoint, non-cancer effects | ILCD 
recommended CF | Disability Adjusted Life Years (DALY) 

DALY EXIOBASE 

Socio- 
economic 

Value Added M.EUR EXIOBASE 

Socio- 
economic 

Employment 1000 p. EXIOBASE 

Socio- 
economic 

Employment hour hr EXIOBASE 

  
 

4.3 FABIO 

4.3.1 Native FABIO indicators 

Focusing on the agricultural sector and using FAO data, FABIO includes the 

harvested crop area and area covered by pastureland as key environmental 

extinctions. In addition, FABIO includes primary biomass extraction as well as blue 

and green water use (Bruckner et al. 2019). Linking crop and pasture area 

environmental extensions to LC-IMPACT and GLOBIO impact assessment models 

enables the quantification of land-based species extinctions (LC-IMPACT), and 

ecosystem intactness (GLOBIO).  

 
 

4.3.2 FABIO and LC-IMPACT 

In the RAINFOREST project, FABIO is linked to LC-IMPACT to quantify land use 

impacts on global species extinctions, quantified by the potentially disappeared 

fraction of species (PDF) (Verones et al. 2020). To link FABIO land use footprints to 

LC-IMPACT land use impact factors PDF, the FABIO land use extension needs to be 

converted from harvested to physical area. We converted the FABIO land use 
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extension from harvested area to physical area, considering that crops can be 

harvested more than once a year using the same area (Marquardt et al. 2019). 

Although most crops are harvested once a year (in 88% of the global cropland area), 

some are harvested more than once in specific regions (in 12% of the global cropland 

area (Waha et al. 2020; Liu et al. 2021). Converting harvested area to physical area 

ensures a more accurate assessment of biodiversity footprint by avoiding double 

counting of land use impacts.  

We use Spatial Production Allocation Model (SPAM) data to derive country-average 

conversion ratios from harvested to physical area, matching the 42 crops in SPAM to 

the 60 primary crop commodities in FABIO (Table S3) (Yu et al. 2020). Finally, to 

maintain consistency with FAOSTAT we corrected the resulting crop- and country-

specific physical areas so that the sum of the crop physical area matches the 

country-total physical cropland area according to FAOSTAT.  

Impact factors for global species extinctions per unit of land use area are derived 

from LC-IMPACT (Verones et al. 2020). Because MRIO data corresponds to the land 

use of a single year, we consider land occupation impacts only. We use impact 

factors for temporary crops, permanent crops, and pastures and link  temporary and 

permanent crop impact factors to FABIO agricultural products based on the 

Indicative Crop Classification data compiled for FAOSTAT 

(https://www.fao.org/statistics/caliper/tools/download/en) (Table S4). 

Multiplying corresponding LC-IMPACT factors with physical area land use footprints 

results in the global species extinction footprint (in PDF).  

 

4.3.3 FABIO and ReCiPe 

Because FABIO focuses on the agricultural sector and not other economic sectors 

such as the energy sector and because FABIO does not include GHG environmental 

extensions, FABIO will not be linked to ReCiPe to quantify climate impacts.  

 
 

4.3.3 FABIO and GLOBIO 

In the RAINFOREST project, FABIO is linked to GLOBIO to quantify land use impacts 

of local ecosystem intactness, quantified by the mean species abundance (MSA) 

https://www.fao.org/statistics/caliper/tools/download/en
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(Schipper et al. 2020). To link FABIO land use footprints to GLOBIO land use impact 

factors for MSA, the FABIO land use extension needs to be converted from harvested 

to physical area (see section 3.3.2). GLOBIO captures local ecosystem intactness by 

pressure-response relationships of human pressures and mean species abundance 

(MSA) (Schipper et al. 2020). The GLOBIO land use pressure-response relationships 

distinguish impacts of specific land use classes on plants and warm-blooded 

vertebrates. Multiplying the corresponding GLOBIO impact factors with physical area 

land use footprints results in the local ecosystem intactness footprint (in MSA∙ha).  

 

4.3.4 Impact indicators related to FABIO 

Table 6. Current impact indicators native to FABIO and quantifiable via model links (Bruckner et al. 

2019).  

Aspect Indicator Unit Sectoral/ 
 product coverage 

Spatial  
coverage 

Spatial  
resolution 

Temporal 
coverage 

Model the 
indicator 
links to 

Resource Primary biomass 
extraction 

tons 123 commodities global 191 
countries/1 
ROW region 

1986-2020 FABIO 

Resource Land use ha 123 commodities global 191 
countries/1 
ROW region 

1986-2020 FABIO 

Resource Blue water use m3 123 commodities global 191 
countries/1 
ROW region 

1986-2020 FABIO 

Resource Green water use m3 123 commodities global 191 
countries/1 
ROW region 

1986-2020 FABIO 

Resource Biodiversity  PDF 123 commodities global 191 
countries/1 
ROW region 

1986-2020 LCIMPACT 

Resource Biodiversity  MSA 123 commodities global 191 
countries/1 
ROW region 

1986-2020 GLOBIO 

 

4.4 FABIO-EXIOBASE hybrid model   

The FABIO-EXIOBASE hybrid model of FABIO and EXIOBASE includes the same 

impact indicators as those defined in EXIOBASE (Section 4.2) and FABIO (Section 4.3), 

including the indicators quantifiable via model links with LC-IMPACT and GLOBIO.  
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4.5 Indicators and international goals and targets  

The impact indicators native to the models or quantifiable via model links might 

be relevant to estimate progress towards international goals and targets for 

biodiversity, climate, and people. Biodiversity is a multifaceted concept, studied 

through a variety of indicators that each capture an aspect of biodiversity. The 

biodiversity intactness index (BII), a measure of the intactness of the local species 

composition and the fraction of globally remaining species (FGRS), an estimate of 

global species extinctions, both quantifiable with GLOBIOM, as well as the mean 

species abundance (MSA), quantifiable with GLOBIO, and the potential disappeared 

fraction of species (PDF), native to LC-IMPACT, measure aspects of the state of 

biodiversity under different environmental pressures such as land use, climate 

change or eutrophication and relate to goal A (protect and restore nature) of the 

Kunming-Montreal Global Biodiversity Framework (GBF) and the Sustainable 

Development Goals (SDG) 14 and 15 on protecting life below water and on land. 

These indicators also allow assessing the biodiversity effects of progress towards 

targets addressing drivers of biodiversity change, for example, GBF targets 1, 2, 3 

and 10, all related to different aspects of land use, target 7 related to pollution 

including from nutrients, and target 8, related to climate change (Table S2). Some 

impact indicators directly measure environmental pressures and direct drivers of 

biodiversity change, for instance, GLOBIOM can quantify different types of land use 

(GBF targets 1,2 & 3) and nitrogen balances for the agricultural sector (GBF target 

7). EXIOBASE can quantify a long list of indicators describing environmental states 

including land use for cropland, pasture and forests (GBF target 1). GLOBIOM and 

EXIOBASE quantify GHG emissions, which relate to the ambitions of the Paris 

Agreement to limit global warming to well below 2°C and to pressures of climate 

change on biodiversity (e.g., GBF target 8; Table S1). Moreover, LC-IMPACT and 

EXIOBASE can quantify various aspects of human health, which link to SDG 3 on good 

health and well-being. The number of people at risk of hunger, native to GLOBIOM, 

is an indicator related to food security (SDG 2) and indicators such as value added 

or employment (both for different sectors/products/industries), quantifiable via 

GLOBIOM and EXIOBASE, relate to SDG 8 on decent work and economic growth.  
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5. TOOLBOX APPLICATION 

5.1 Fishmeal production case study 

The case study in Peru is centred on understanding the environmental impacts of 

the production of fishmeal and fish oil (FMFO) from Peruvian anchoveta (Engraulis 

ringens) in the city of Chimbote. Chimbote harbours the main fishing port and FMFO 

production hub of Peru. For this, an LCA perspective is followed in which 

“conventional” and “emerging” environmental impact categories are applied to 

extend the spectrum of environmental indicators that are used to measure the 

environmental sustainability of this type of production system. In fact, it should be 

noted that there is an important lack of datapoints in the scientific literature linked 

to the production of FMFO, and only the studies by Avadí et al. (2014) and Fréon et 

al. (2017) have delved into the life cycle impacts of FMFO production in Peru, the 

world leader for these two commodities. 

The results of this study, which are currently underway, aim to update FMFO 

production environmental impacts in Peru, which are yet to be brought up to date 

as compared to the abovementioned studies. The update is considered important as 

technological improvements have been introduced in FMFO production, especially in 

terms of using cleaner fossil fuels in the heating and drying processes, and it is also 

important to consider the changes in the health of the anchoveta fishing stock, one 

of the most abundant worldwide, but also widely fished, and subject to illegal, 

unregulated and unreported (IUU) landings. In this sense, we aim to provide a full 

quantification of environmental impacts using one of the most recent and up to date 

assessment methods available in the LCA literature, LC-IMPACT, for the 

“conventional” environmental impacts. Moreover, additional indicators linked to 

marine resources and ocean conservation, named earlier “emerging” impact 

categories, will be included in the computation. For the latter, a full review has 

been elaborated identifying all the methodological proposals that have been 

published in the literature linked to seabed impact, depletion of targeted biotic 

resource, marine plastics, following some of the most recent publications related to 

the Marilca and ATLANTIS projects, among others. 

Data has been collected for purse seining fishing fleets targeting the anchoveta 
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fishery within the Peruvian EEZ for years 2019 and 2021. Similarly, data on FMFO 

production is available for 5 FMFO reduction plants across the Peruvian coast, most 

of them operating in or in the vicinity of the city of Chimote. Life cycle modelling is 

currently on the way, for which methodological assumptions on allocation 

(considering the multifunctional nature of the production system) have been 

considered. In this sense, we are currently finalizing the life cycle inventory for 

FMFO production in terms of “conventional” impact categories. For the remaining 

impact categories, it was decided that the biotic resources characterization factors 

developed by Hélias et al. (2023) were the most appropriate methodological basis, 

but they are being modified to account for the semi-cyclical behaviour of El Niño-

Southern Oscillation (ENSO), which highly affects the catchability of anchoveta 

stocks in the Peruvian EEZ. These computations are still underway and are expected 

to provide site-specific data related to the assessment of this stock from an LCA 

perspective. The remaining “emerging” impact categories are still under analysis to 

understand their applicability with the data quality available for the system under 

analysis. Another action which is under development at the time of this report is 

linking the wide spectrum of categories considered in the modelling with the 

transformative pathways recommended in D1.1, with the aim of identifying how the 

upcoming results can help in policymaking within the Peruvian FMFO sector, and the 

worldwide aquaculture sector that obtains an important portion of its feed from 

Peruvian reduction plants. 

 

5.2 Food consumption case study 

The food consumption scenarios case-study aims to quantify the implications of 

alternative national food consumption scenarios in the Netherlands, the United 

Kingdom, and the United States of America on climate and biodiversity. Consumer 

surveys will inform the development of national food consumption scenarios and the 

model toolbox will be applied to quantify climate and biodiversity footprints of the 

corresponding national food consumption scenarios. The Food and Agriculture 

Biomass Input-Output model (FABIO) will be combined with LC-IMPACT and GLOBIO 

to quantify national consumption climate and biodiversity footprints (i.e., national 

consumption scenarios will tweak the FABIO data in ‘what-if’ scenarios).  
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5.3 Investment portfolio case study 

The investment portfolio case-study aims to quantify climate and biodiversity 

footprints of investment portfolios (typically consisting of ~100 company 

investments spread over several economic sectors). Quantifying climate and 

biodiversity footprints of portfolios requires a hybrid approach between company-

specific foreground life cycle inventory (scope 1 and possibly scope 2) data and 

sector average data to quantify upstream impacts along company value chains 

(scope 3 data). Scope 1 impacts refer to the direct impacts caused by company 

activities. Scop2 2 impacts refer to the indirect impacts caused by the energy 

production that is directly consumed by the company. Scope 3 impacts refer to the 

indirect impacts caused upstream by the production of resources and intermediate 

products that the company uses. Hence, the investment portfolio case-study will 

build upon an integration of company-specific data (to quantify direct company-

level impacts) and input-output data (e.g., EXIOBASE, to quantify indirect average 

upstream environmental impacts of company value chains). Subsequently  LC-

IMPACT and GLOBIO will be used to quantify the climate and biodiversity footprints 

corresponding to the investment portfolios. The application of EXIOBASE also allows 

for the quantification of socio-economic impacts. 

 

5.4 Novel food case study 

This case study focuses on assessing the biodiversity footprint associated with 

novel foods, which utilize new production technologies and are primarily derived 

from agricultural products and waste biomass already existing within the FABIO 

database. The development of novel alternatives for meat and milk (hereafter 

referred to as novel food) these years has been identified as a viable alternative for 

reducing animal-source food consumption. These novel foods are normally made 

from non-animal-based ingredients (e.g. plants, mycelium), with the taste 

mimicking animal products. These years, novel foods have already gained popularity 

in food market, especially plant-based novel food alternatives, which accounted for 

15% of the milk market in the USA and 1.4% and 1.3% of the meat markets in the USA 

and Germany in 2020, respectively.  
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Diverse plant-based meat alternatives have been developed and evaluated these 

years. For example, Saget et al. (2021) compared plant-based (Legume-derived) 

burger patties and beef burger patties and found that plant-based patties have a 

smaller environmental impact across most categories, especially a 77% smaller 

climate change burden. Kozicka et al. (2023)  found that replacing 50% of key animal 

products with plant-based alternatives by 2050 can nearly halt deforestation and cut 

agriculture and land use GHG emissions by 31% from 2020 levels.  

Although innovative alternatives offer advantages to local environments, their 

broader biodiversity implications within the intricate global food system remain 

inadequately comprehended. In this study, the evaluation of these novel food 

products' biodiversity footprints will employ the FABIO-EXIOBASE hybrid model, from 

an input–output-based life cycle assessment approach (IO-LCA) approach. 

The FABIO-EXIOBASE hybrid model allows for a comprehensive analysis by leveraging 

the input-output framework of FABIO and the environmental impact upstream data 

from EXIOBASE. The IO-LCA approach integrates IO analysis into conventional 

process-based LCA, leveraging macroeconomic data from background systems to 

enhance efficiency and accuracy. This method accelerates the LCA process, 

streamlines inventory collection, and optimizes resource allocation (Mattila 2018). 

The purpose of the study is to evaluate the broader biodiversity implications of 

novel food within the intricate global food system and to determine to what level 

the consumption of the designated planted-based novel food is associated with a 

lower biodiversity impact than that of corresponding animal-based products. 

Through this approach, we aim to provide valuable insights into the biodiversity 

impacts of emerging food technologies and their implications for food production 

system’s sustainability. 

 

5.5 Food case study for the touristic value chain 

This case study focuses on assessing the environmental and socio-economic 

impacts of the food chain in the tourism industry in Cyprus and developing 

alternative pathways for transformative change that benefit biodiversity. The 

development of a sustainable food chain is underway with system mapping of the 
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current situation in the Cyprus tourism sector. For this purpose, secondary data 

covering a range of tourist statistics (demographics, arrivals, accommodation, length 

of stay, expenditure, and revenue) from the Cyprus Statistical Service (CYSTAT) has 

been collected. Additionally, secondary datasets on tourists’ food consumption in 

Cyprus have been compiled to identify consumption patterns and changes in dietary 

preferences over the last decade (up to 2019), as well as the origins of food items 

consumed by tourists. To this end, Food Balance Sheets (FBS) and Supply Utilization 

Accounts (SUA) from FAOSTAT have been collected. Trade data of food commodities 

for Cyprus has also been gathered from the annual trade matrix available in 

FAOSTAT.  

Regarding primary data, a survey of hotels will be conducted to investigate 

tourists' food consumption patterns and the perceptions of stakeholder groups within 

Cyprus’s tourist food supply chain. Specifically, data will be collected using a 

comprehensive questionnaire and semi-structured interviews with hoteliers and food 

and beverage managers, aiming to enhance our understanding of the dynamics 

surrounding food supply, consumption patterns, and food loss management. This 

information will serve as the basis for refining the scenarios and pathways developed 

in RAINFOREST towards a more sustainable food supply in the tourism industry and 

will be enriched by utilizing relevant models and metrics from the RAINFOREST 

model toolbox. 

 Considering the objective of this case study, the FABIO model is the most 

appropriate tool that can be used, as it facilitates tracking the impact of dietary 

changes and food wastage. While changes within individual countries can be 

monitored, the data provided also allows for tracking the impact in countries from 

which goods are imported. This is very relevant for Cyprus, as a large share of food 

commodities are imported. By integrating the global physical flows of commodities 

and the embodied nutrients, land, water, and energy data provided by FABIO with 

the comprehensive EXIOBASE database, it becomes possible to translate 

environmental impacts into biodiversity loss assessments. This capability enables the 

evaluation of the impacts of each commodity used in the tourism hospitality 

industry, making it essential for understanding the broader context of food 

consumption and for making informed and targeted decisions. 
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Overall, the purpose of this study is to identify food consumption patterns within 

the tourism sector of Cyprus that could mitigate biodiversity loss and contribute to 

meeting the targets outlined in the EU Biodiversity Strategy 2030. Additionally, it 

aims to determine the effectiveness of mitigation measures targeting food waste 

reduction and actions to minimize the environmental footprint of food served, in 

comparison to a business-as-usual scenario. Through this analysis, valuable insights 

will be gained towards sustainable food consumption patterns in the tourism sector 

and the development of appropriate strategies. 
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6. SUMMARY AND OUTLOOK  

RAINFOREST’s model toolbox combines a set of environmental-economic and 

impact assessment models. The toolbox includes a set of impact indicators native to 

the individual models or quantifiable via tailored model linking. Specifically, the 

toolbox covers GLOBIOM, a bio-economic model to address various land use related 

topics, EXIOBASE, providing a time series of environmentally extended multi-

regional input‐output (EEMRIO) tables, FABIO, a physical EEMRIO focusing on the 

agricultural sector, Life Cycle Impact Assessment methods such as LC-IMPACT, and 

biodiversity models such as GLOBIO. The toolbox allows us to comprehensively assess 

socio-economic, climate, and biodiversity impacts related to transformative change 

within the EU’s agri-food sector, establishing quantitative insights related to 

internationally agreed-upon goals and targets for biodiversity, climate, and people.  

The next step in RAINFOREST is to establish the model links by linking 

environmental flows of the environmental-economic models to the pressure-

response factors from the impact assessment models. These links, in terms of tables 

and/or code will be made available in a subsequent RAINFOREST deliverable.  

We have highlighted how the toolbox will subsequently be applied to diverse case 

studies conducted in the course of RAINFOREST, such as case studies on fishmeal 

production, food consumption scenarios, investment portfolios, and biodiversity 

footprints of novel foods. In addition to these case studies, the model toolbox will 

also be utilized to quantify aspects of pathways of transformative change developed 

in WP1. Moreover, future developments of the toolbox include the integration of 

additional impact indicators related to socio-economic, climate and biodiversity 

aspects. Furthermore, in addition to establishing links between models, RAINFOREST 

aims to further develop the individual models in the model toolbox. For example, 

GLOBIOM can be expanded by adding a phosphorus balance; and the representation 

of land use and climate impacts on biodiversity can be improved in LC-IMPACT based 

on novel impact indicator developments. 
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SUPPLEMENTARY TABLES 

Table S1. Selection of international climate targets and potential indicators (EU Green Deal, Paris 

Agreement) 

Body* Type N Description Potential 
indicator** 

EGD Target  Reduce net GHG emissions by at least 55% by 2030, compared to 1990 
levels. 

GHG kg CO2-eq   

EDG Target  Reduce net GHG emissions by 90% by 2040 relative to 1990 GHG kg CO2-eq   
EGD Target  Achieve net zero emissions by 2050 GHG kg CO2-eq   
PA Article 2.1 Holding the increase in the global average temperature to well below 

2°C above pre-industrial levels and pursuing efforts to limit the 
temperature increase to 1.5°C above pre-industrial levels (to limit 
global warming to 1.5°C, GHG emissions must peak before 2025 and 
decline 43% by 2030) 

GHG kg CO2-eq   

* EU Green Deal (EGD), Paris Agreement (PA) 
** Greenhouse gas (GHG) 

 
Table S2. Selection of international biodiversity targets and potential indicators (Global Biodiversity 

Framework, EU Biodiversity Strategy, Sustainable Development Goals, Planetary Boundaries) 

Body* Type N Description Potential indicator** 

GBF Goal A The integrity, connectivity and resilience 
of all ecosystems are maintained, 
enhanced, or restored, substantially 
increasing the area of natural ecosystems 
by 2050; Human induced extinction of 
known threatened species is halted, and, 
by 2050, the extinction rate and risk of 
all species are reduced tenfold and the 
abundance of native wild species is 
increased to healthy and resilient levels 
The genetic diversity within populations 
of wild and domesticated species, is 
maintained, safeguarding their adaptive 
potential. 

MSA, FGRS, BII, PDF 

GBF Goal B Biodiversity is sustainably used and 
managed and nature’s contributions to 
people, including ecosystem functions 
and services, are valued, maintained and 
enhanced, with those currently in decline 
being restored, supporting the 
achievement of sustainable development 
for the benefit of present and future 
generations by 2050. 

MSA 
 

GBF Target 7 Reduce pollution risks and the negative 
impact of pollution from all sources, by 
2030, to levels that are not harmful to 
biodiversity and ecosystem functions and 
services, considering cumulative effects, 
including: reducing excess nutrients lost 
to the environment by at least half 
including through more efficient nutrient 
cycling and use; reducing the overall risk 
from pesticides and highly hazardous 
chemicals by at least half including 
through integrated pest management, 
based on science, taking into account 
food security and livelihoods; and also 
preventing, reducing, and working 
towards eliminating plastic pollution. 

Kg N/ha/yr application; 
PDF; MSA 

GBF Target 8 Minimize the impact of climate change 
and ocean acidification on biodiversity 
and increase its resilience through 
mitigation, adaptation, and disaster risk 
reduction actions, including through 
nature-based solution and/or ecosystem-

PDF, MSA 
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based approaches, while minimizing 
negative and fostering positive impacts 
of climate action on biodiversity. 

GBF Target 10 Ensure that areas under agriculture, 
aquaculture, fisheries and forestry are 
managed sustainably, in particular 
through the sustainable use of 
biodiversity, including through a 
substantial increase of the application of 
biodiversity friendly practices, such as 
sustainable intensification, 
agroecological and other innovative 
approaches contributing to the resilience 
and long-term efficiency and productivity 
of these production systems and to food 
security, conserving and restoring 
biodiversity and maintaining nature’s 
contributions to people, including 
ecosystem functions and services . 

MSA, PDF 

EBS Target 6 The risk and use of chemical pesticides is 
reduced by 50%, and the use of more 
hazardous pesticides is reduced by 50% 
by 2030 

Kg/ha/yr pesticide 
application; PDF; MSA 

PBF Boundary 2.1 90% biodiversity intactness index (BII) BII or MSA 

* Kunming-Montreal Global Biodiversity Framework (GBF), EU Biodiversity Strategy (EBS), Sustainable Development Goal 

(SDG), and Planetary Boundary Framework (PBF). 
** Mean species abundance (MSA), Potentially Disappeared Fraction of Species (PDF), and Biodiversity Intactness Index (BII) 
 

Table S3. Mapping relationship of primary crops in FABIO and SPAM 

FABIO_code FABIO_name SPAM_name 

c001 Rice and products rice 

c002 Wheat and products whea 

c003 Barley and products barl 

c004 Maize and products maiz 

c005 Rye and products ocer 

c006 Oats ocer 

c007 Millet and products pmil/smil 

c008 Sorghum and products sorg 

c009 Cereals, Other ocer 

c010 Potatoes and products pota 

c011 Cassava and products cass 

c012 Sweet potatoes swpo 

c013 Roots, Other orts 

c014 Yams yams 

c015 Sugar cane sugc 

c016 Sugar beet sugb 

c017 Beans bean 

c018 Peas opul 

c019 Pulses, Other and products opul 

c020 Nuts and products rest 

c021 Soyabeans soyb 

c022 Groundnuts grou 

c023 Sunflower seed sunf 

c024 Rape and Mustardseed rape 

c025 Seed cotton cott 

c026 Coconuts - Incl Copra cnut 
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c027 Sesame seed sesa 

c028 Oil, palm fruit oilp 

c029 Olives (including preserved) ooil 

c030 Oilcrops, Other ooil 

c031 Tomatoes and products vege 

c032 Onions vege 

c033 Vegetables, Other vege 

c034 Oranges, Mandarines trof 

c035 Lemons, Limes and products trof 

c036 Grapefruit and products trof 

c037 Citrus, Other trof 

c038 Bananas bana 

c039 Plantains plnt 

c040 Apples and products temf 

c041 Pineapples and products trof 

c042 Dates trof 

c043 Grapes and products (excl wine) temf 

c044 Fruits, Other trof/temf 

c045 Coffee and products acof/rcof 

c046 Cocoa Beans and products coco 

c047 Tea (including mate) teas 

c048 Hops rest 

c049 Pepper rest 

c050 Pimento rest 

c051 Cloves rest 

c052 Spices, Other rest 

c053 Jute ofib 

c054 Jute-Like Fibres ofib 

c055 Soft-Fibres, Other ofib 

c056 Sisal ofib 

c057 Abaca ofib 

c058 Hard Fibres, Other ofib 

c059 Tobacco toba 

c060 Rubber rest 

c061 Fodder crops   

c062 Grazing  

 
Table S4. Crop classification of primary crops in FABIO 

FABIO_code FABIO_name Crop type 

c001 Rice and products T 

c002 Wheat and products T 

c003 Barley and products T 

c004 Maize and products T 

c005 Rye and products T 

c006 Oats T 

c007 Millet and products T 

c008 Sorghum and products T 
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c009 Cereals, Other T 

c010 Potatoes and products T 

c011 Cassava and products T 

c012 Sweet potatoes T 

c013 Roots, Other T 

c014 Yams T 

c015 Sugar cane T 

c016 Sugar beet T 

c017 Beans T 

c018 Peas T 

c019 Pulses, Other and products T 

c020 Nuts and products P 

c021 Soyabeans T 

c022 Groundnuts T 

c023 Sunflower seed T 

c024 Rape and Mustardseed T 

c025 Seed cotton T 

c026 Coconuts - Incl Copra P 

c027 Sesame seed T 

c028 Oil, palm fruit P 

c029 Olives (including preserved) P 

c030 Oilcrops, Other T 

c031 Tomatoes and products T 

c032 Onions T 

c033 Vegetables, Other T 

c034 Oranges, Mandarines P 

c035 Lemons, Limes and products P 

c036 Grapefruit and products P 

c037 Citrus, Other P 

c038 Bananas P 

c039 Plantains P 

c040 Apples and products P 

c041 Pineapples and products P 

c042 Dates P 

c043 Grapes and products (excl wine) P 

c044 Fruits, Other P 

c045 Coffee and products P 

c046 Cocoa Beans and products P 

c047 Tea (including mate) P 

c048 Hops P 

c049 Pepper P 

c050 Pimento P 

c051 Cloves P 

c052 Spices, Other P 

c053 Jute T 

c054 Jute-Like Fibres T 

c055 Soft-Fibres, Other T 
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c056 Sisal P 

c057 Abaca P 

c058 Hard Fibres, Other P 

c059 Tobacco T 

c060 Rubber P 

c061 Fodder crops P 

c062 Grazing Pasture 

T = temporary, P = permanent. 
 
 


